The cohomology ring of a smooth manifold
نویسندگان
چکیده
منابع مشابه
GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD
In this paper, we introduce the structure of a groupoid associated to a vector field on a smooth manifold. We show that in the case of the $1$-dimensional manifolds, our groupoid has a smooth structure such that makes it into a Lie groupoid. Using this approach, we associated to every vector field an equivalence relation on the Lie algebra of all vector fields on the smooth...
متن کاملgroupoid associated to a smooth manifold
in this paper, we introduce the structure of a groupoid associated to a vector field on a smooth manifold. we show that in the case of the $1$-dimensional manifolds, our groupoid has a smooth structure such that makes it into a lie groupoid. using this approach, we associated to every vector field an equivalence relation on the lie algebra of all vector fields on the smooth...
متن کاملThe Lie Algebra of a Smooth Manifold
It is well known that certain topological spaces are determined by rings of continuous real functions defined over them [l; 2; 3],1 and for differentiable manifolds the functions may be differen tiable [4; 7]. In this note we prove that the Lie algebra of all tangent vector fields with compact supports on an infinitely differentiable manifold determines the manifold, and that two such manifolds...
متن کاملComputing the Poisson Cohomology of a B-poisson Manifold
Because Poisson cohomology is quite challenging to compute, there are only very select cases where the answer is known. In the case of a symplectic manifold where the Poisson bi-vector is non-degenerate, the Poisson cohomology is isomorphic to the de Rham cohomology. The non-degeneracy of π allows us to define an isomorphism T ∗M → TM that provides this isomorphism in cohomology: H(M) ' H π(M)....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1969
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1969-0235482-9